Non associative renormalization group

Alessandra Frabetti (Lyon)

Developments in Modern Mathematics: a WiMGo conference Göttingen, September 18-20, 2023

Motivation

Motivation and plan

virtual world (device for computations)

Pb: duality holds iff the coefficients, amplitudes and Hopf algebras are commutative, but in QED and QCD amplitudes are matrices.
4) Extend duality to non-commutative algebras.
5) When duality fails with groups, extend to loops = non-assocociative groups.

1) QFT: quantum corrections and virtual particles

- Problems in QED [1930's]: predictions on electron mass and charge need corrections
- Feynman graphs [1948]: $\mathcal{L}(\phi ; \lambda)=\mathcal{L}_{0}(\phi)+\lambda \mathcal{L}_{\text {int }}(\phi)$
\mathcal{L}_{0} gives the free propagator $\mathcal{L}_{\text {int }}$ gives vertices

\Rightarrow Feynman graphs Γ, e.g. for ϕ^{3} :

 or
 with amplitude $a(\Gamma)=$ integral over internal points with Feynman rules.
- Green functions:

$$
G^{(k)}\left(x_{1}, \ldots, x_{k} ; \lambda\right)=\bigcap_{x_{2}}^{x_{1}-\bigcap_{x_{3}}} \cdot \sum_{E(\Gamma)=k}^{x_{k}} a\left(\Gamma ; x_{1}, \ldots, x_{k}\right) \hbar^{L(\Gamma)} \lambda^{V(\Gamma)}
$$

- Formal series in λ with coefficients in $A=\mathbb{C}, M_{4}(\mathbb{C}) \ldots$ given by \mathcal{L}_{0} :

$$
G_{n}^{(k)}=\sum_{V(\Gamma)=n} a(\Gamma) \hbar^{L(\Gamma)} \in A[\hbar] \Longrightarrow G^{(k)}(\lambda)=\sum_{n \geqslant 0} G_{n}^{(k)} \lambda^{n} \in A[\hbar][[\lambda]]
$$

Renormalization

- Divergent graphs:

$$
\bigodot_{p-q}^{q} p=\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{q^{2}+m^{2}} \frac{1}{(p-q)^{2}+m^{2}} \simeq \int_{|q| \min }^{\infty} d|q| \frac{1}{|q|}=\infty!
$$

Counterterms $c(\Gamma)=-$ divergent part (scalar in A) Amplitudes $a^{\text {rem }}(\Gamma)=a(\Gamma)+c(\Gamma)+$ terms $\Longrightarrow \quad G^{r e n}(\lambda)=\sum a^{r e n}(\Gamma) \hbar^{L(\Gamma)} \lambda^{V(\Gamma)}$

- Dyson formula [1949]: collect $c(\Gamma)$'s in few series $Z_{i}(\lambda)$ s.t.

$$
\begin{aligned}
& \phi_{0}=\phi Z_{3}(\lambda)^{1 / 2} \\
& \lambda_{0}=\lambda Z_{1}(\lambda) Z_{3}(\lambda)^{-3 / 2}
\end{aligned}
$$

then

$$
\mathcal{L}^{\text {rem }}(\phi ; \lambda)=\mathcal{L}\left(\phi_{0} ; \lambda_{0}\right) \quad \text { and }
$$

$$
G^{r e n}(\lambda)=G\left(\lambda_{0}(\lambda)\right) Z_{3}(\lambda)^{-1 / 2}
$$

Renormalization factors: $Z(\lambda)=1+O(\lambda) \Rightarrow$ invertibile series with product Bare coupling: $\quad \lambda_{0}(\lambda)=\lambda+O\left(\lambda^{2}\right) \Rightarrow$ formal diffeomorphism with substitution

- Ren. group (perturbative) $=$ bare coupling \ltimes ren. factors contains $\left(\lambda_{0}(\lambda), Z_{i}(\lambda)\right)$ Semidirect product

$$
\left(\lambda_{0}^{\prime}, Z^{\prime}\right) \bullet\left(\lambda_{0}(\lambda), Z(\lambda)\right)=\left(\lambda_{0}^{\prime}\left(\lambda_{0}(\lambda)\right), Z^{\prime}\left(\lambda_{0}(\lambda)\right) Z(\lambda)\right)
$$

\Longrightarrow acts on $G(\lambda)$ by Dyson's formula

$$
G^{\text {rem }}=G \bullet\left(\lambda_{0}, Z\right)
$$

2) Counterterms and Hopf algebras

- BPHZ formula ['57-'69]: recurrence on 1PI divergent subgraphs

$$
\begin{aligned}
a^{r e n}(\Gamma) & =a(\Gamma)+c(\Gamma)+\sum_{\left(\gamma_{i}\right)} a\left(\Gamma_{/\left(\gamma_{i}\right)}\right) c\left(\gamma_{1}\right) \cdots c\left(\gamma_{r}\right) \\
c(\Gamma) & =- \text { Taylor }^{\operatorname{div}(\Gamma)}\left[a(\Gamma)+\sum a\left(\Gamma_{/\left(\gamma_{i}\right)}\right) c\left(\gamma_{1}\right) \cdots c\left(\gamma_{r}\right)\right]
\end{aligned}
$$

- Hops algebra on Feynman graphs [Connes-Kreimer '98-2000]:

$$
\begin{aligned}
H_{\mathrm{CK}} & =\mathbb{C}[1 \mathrm{PI} \Gamma] \quad \text { free commutative product } \\
\Delta(\Gamma) & =\Gamma \otimes 1+1 \otimes \Gamma+\sum \Gamma /\left(\gamma_{k}\right) \otimes \gamma_{1} \cdots \gamma_{r} \\
S(\Gamma) & =-\left[\Gamma+\sum \Gamma /\left(\gamma_{k}\right) S\left(\gamma_{1}\right) \cdots S\left(\gamma_{r}\right)\right]
\end{aligned}
$$

Hops algebra multiplication $m: H \otimes H \rightarrow H$ comultiplication $\Delta: H \rightarrow H \otimes H$ unit $u: \mathbb{K} \hookrightarrow H \quad \begin{aligned} \text { counit } & \varepsilon: H \rightarrow \mathbb{K} \\ \text { antipode } & S: H \rightarrow H\end{aligned}$
e.g. $\quad \Delta(-$ gog $)=-0-\otimes 1+2-\bigcirc-\otimes-\bigcirc+-\bigcirc-\otimes(-\bigcirc-)^{2}+1 \otimes-0-$
amplitudes $=$ algebra maps $a, a^{\text {rent }}: H_{\mathrm{CK}} \rightarrow A[\hbar]$ related to coproduct Δ
counterterms $=$ algebra $\operatorname{map} \quad c: H_{\mathrm{CK}} \rightarrow \mathbb{C} \subset A[\hbar]$ related to antipode S

3) Groups of series with coefficients in a commutative algebra A

- Proalgebraic group: representable functor

$$
\begin{aligned}
G: \mathcal{C o m} & \rightarrow \mathcal{G} \text { roups } \\
A & \mapsto G(A)=\operatorname{Hom}_{\text {Com }}(H, A)
\end{aligned}
$$

$H=$ coordinate ring of G gen. by coordinate functions $x_{n}(g):=g\left(x_{n}\right)$

- Duality: H is a Hopf algebra with $\Delta_{H}\left(x_{n}\right)\left(g, g^{\prime}\right)=x_{n}\left(g g^{\prime}\right)$
G is the convolution group with $\quad g g^{\prime}=m_{A}\left(g \otimes g^{\prime}\right) \Delta_{H}$
- Compact Lie groups [Tannaka-Krein 1939]: $H=$ representative fuctions
- Formal diffeomorphisms [Lagrange 1770, Faà di Bruno 1855]:

$$
\operatorname{Diff}(A)=\left\{a(\lambda)=\sum a_{n} \lambda^{n+1} \mid a_{0}=1, a_{n} \in A\right\} \quad(a \circ b)(\lambda)=a(b(\lambda))
$$

- Diffeographisms [Connes-Kreimer 2000]:

$$
\begin{aligned}
& \operatorname{Diff}_{\mathrm{CK}}(A):=\operatorname{Hom}_{\mathcal{C o m}}\left(H_{\mathrm{CK}}, A\right)=\left\{a(\lambda)=\sum_{\ulcorner } a_{\ulcorner } \lambda^{\ulcorner } \mid a_{\ulcorner } \in A\right\} \\
& (a \bullet b)(\lambda)=\sum_{\ulcorner }\left(a_{\ulcorner }+b_{\Gamma}+\sum a_{\Gamma /\left(\gamma_{k}\right)} b_{\gamma_{1}} \cdots b_{\gamma_{r}}\right) \lambda^{\ulcorner }
\end{aligned}
$$

"virtual" series!
" λ 「" symbol

- Virtual \rightarrow Real: projection

$$
\operatorname{Diff}_{\mathrm{CK}}(A) \rightarrow \operatorname{Diff}(A), \lambda^{\ulcorner } \mapsto \lambda^{V(\ulcorner)}
$$

- In QFT: need integral counterterms for

$$
Z_{k}(\lambda)=1+\sum_{E(\Gamma)=k} \frac{c_{k}(\Gamma)}{\operatorname{sym}(\Gamma)} \lambda^{V(\Gamma)}
$$

4) Extension to non-commutative coefficients

- Renormalization ruled by functors Diff and Diff ${ }_{\mathrm{CK}}$: same procedure for all QFTs!
- Fermions and gauge bosons: need non commutative algebra $A[\hbar]$ (at least $M_{4}(\mathbb{C})$), but the functor Diff: $\mathcal{C o m} \rightarrow$ Groups does not apply!
- QED given by a commutative Hopf algebra [Van Suijlekom 2007] as matrix groups, but not functorial in $A \quad\left(\bullet \neq\right.$ convolution of $\left.\Delta_{\mathrm{CK}}\right)$!

- QED also given by non-commutative FdB Hopf algebra [Brouder-F-Krattenthaler 2006]:

$$
\begin{aligned}
H_{\mathrm{FdB}}^{\mathrm{nc}} & =\mathbb{K}\left\langle x_{n} \mid n \geqslant 1\right\rangle \quad\left(x_{0}=1\right) \\
\Delta_{\mathrm{FdB}}^{\mathrm{nc}}\left(x_{n}\right) & =\sum_{m+k_{0}+\cdots+k_{m}=n} x_{m} \otimes x_{k_{0}} \cdots x_{k_{m}}
\end{aligned}
$$

- Can we extend Diff to a functor on associative (non-commutative) algebras?

Not for free! If H and A are non-commutative, the convolution product

$$
a * b=m_{A}(a \otimes b) \Delta_{H} \quad \text { in } \quad \operatorname{Hom}_{\mathcal{A} s}(H, A)
$$

is not well defined because $m_{A}: A \otimes A \rightarrow A$ is not an algebra morphism! (old problem)

Groups of series with coefficients in a non-commutative algebra A

- Idea: in $\mathcal{A} s$ replace the algebra $A \otimes B$ with product $(a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)=a a^{\prime} \otimes b b^{\prime}$
by free product algebra $A \amalg B=\mathbb{K} \oplus \bigoplus_{n \geqslant 1}^{\oplus}[\underbrace{A \otimes B \otimes A \otimes \cdots}_{n} \oplus \underbrace{B \otimes A \otimes B \otimes \cdots}_{n}]$
with concatenation

$$
(a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)=a \otimes b \otimes a^{\prime} \otimes b^{\prime}
$$

$\Longrightarrow m_{A}: A \otimes A \rightarrow A$ lifts to folding map $\mu_{A}: A \amalg A \rightarrow A$ which is an algebra map!

- Cogroup in \mathcal{A} s [Kan 1958, Eckmann-Hilton 1962] = associative algebra H with
comultiplication $\Delta^{\amalg}: H \rightarrow H \pm H \quad$ coass.
counit $\varepsilon: H \rightarrow \mathbb{K} \quad+$ prop
antipode $S: H \rightarrow H \quad+$ prop
\Longrightarrow proalgebraic group $\quad G(A):=\operatorname{Hom}_{\mathcal{A} s}(H, A)$ with $a * b=\mu_{A}(a \amalg b) \Delta_{H}^{U}$
- Group of invertible series:
[Brouder-F-Krattenthaler 2006]

$$
\operatorname{Inv}(A) \Leftrightarrow \begin{aligned}
& H=\mathbb{K}\left\langle x_{1}, x_{2}, \ldots\right\rangle \\
& \Delta^{\mathrm{U}}\left(x_{n}\right)=\sum x_{m} \otimes x_{n-m}
\end{aligned}
$$

\Longrightarrow good model for renormalization factors $Z(\lambda)$ in QFT!
5) When groups fail: use loops!

- Problem: if A is not commutative, the composition in $\operatorname{Diff}(A)$ is not associative:

$$
(a \circ(b \circ c)-(a \circ b) \circ c)(\lambda)=\left(a_{1} b_{1} c_{1}-a_{1} c_{1} b_{1}\right) \lambda^{4}+O\left(\lambda^{5}\right) \neq 0
$$

- Loop [Moufang 1935] $=$ set Q with

	multiplication	$a \cdot b$	(not nec. assoc.)
unit	1		+ cond.
	left and right divisions	$a \backslash b$	a / b
+ cond.			
$\Rightarrow \quad$ left and right inverse of a	$1 / a$	$a \backslash 1$	+ cond.

so that $a \cdot x=b$ and $y \cdot a=b \quad$ have unique solutions $x=a \backslash b, y=b / a \in Q$

- Associative loops = groups

$$
1 / a=a \backslash 1=a^{-1} \quad a \backslash b=a^{-1} \cdot b \quad a / b=a \cdot b^{-1}
$$

- Smallest non-associative smooth loop: $\mathbb{S}^{7}=\{$ unit octonions $\}$
- Thm. [Sabinin 1977, 1981, 1986] Parallel transport along small geodesics gives a local smooth loop structure to any manifold M. Flat connection \Rightarrow global loop.
- Infinitesimal spaces: Sabinin algebras (and Malt'sev algebras for Moufang loops). Differential calculus developed on smooth loops.

Loops of series with coefficients in a non-commutative algebra A

- Coloop in $\mathcal{A s}$ [F-Shestakov 2019] $=$ algebra H with

- Loop of formal diffeomorphisms [F-Shestakov 2019]:

$$
\begin{array}{|l|l}
\operatorname{Diff}(A)
\end{array} \Leftrightarrow \quad \begin{aligned}
& H=\mathbb{K}\left\langle x_{1}, x_{2}, \ldots\right\rangle \quad \Delta^{\mathrm{U}}\left(x_{n}\right)=\Delta_{\mathrm{FdB}}^{\mathrm{nc}}\left(x_{n}\right) \\
& \delta_{r}\left(x_{n}\right)=\text { non-commutative Lagrange } \\
& \delta_{l}\left(x_{n}\right)=\text { new explicit formula (very complicated) }
\end{aligned}
$$

- Thm. $\operatorname{In} \operatorname{Diff}(A)$ inverse is unique and $a / b(\lambda)=a \circ b^{-1}(\lambda)$ (while $\left.a \backslash b(\lambda) \neq a^{-1} \circ b(\lambda)!\right)$
\Rightarrow Dyson renormalization formulas make sense! cf. Birkhoff dec. $G=G^{r e n} \bullet\left(\lambda_{0}, Z\right)^{-1}$ \Rightarrow good model for charge renormalization $\lambda_{0}(\lambda)$ in QFT!

Free product is necessary!

In the loop $\operatorname{Diff}(A)$, we have $1 / a=a \backslash 1=: a^{-1} \quad$ and also $a / b=a \circ b^{-1}$ but

$$
a \backslash b \neq a^{-1} \circ b!
$$

In the series $a \backslash b$, the coefficient

$$
\begin{aligned}
(a \backslash b)_{3} & =b_{3}-\left(2 a_{1} b_{2}+a_{1} b_{1}^{2}\right)+\left(5 a_{1}^{2} b_{1}+a_{1} b_{1} a_{1}-3 a_{2} b_{1}\right) \\
& -\left(5 a_{1}^{3}-2 a_{1} a_{2}-3 a_{2} a_{1}+a_{3}\right)
\end{aligned}
$$

contains the term $a_{1} b_{1} a_{1}$ which can not be represented in the form

$$
x(a) \otimes y(b) \in H_{\mathrm{FdB}}^{\mathrm{nc}} \otimes H_{\mathrm{FdB}}^{\mathrm{nc}},
$$

while it can be represented as

$$
x_{1}(a) \otimes y_{1}(b) \otimes x_{1}(a) \in H_{\mathrm{FdB}}^{\amalg} \amalg H_{\mathrm{FdB}}^{\mathrm{U}} .
$$

This justifies the need to replace \otimes by \amalg in the coproduct and in the codivisions!

Conclusion and perspectives

Conclusion:

- In pQFT, the renormalization group (RG) acts in a functorial way (via Hopf alg.): it gives the same procedure for any scalar QFT.
- The RG action can be extended in a functorial way to non-scalar QFTs, if we renounce to associativity in RG (by modifying the flow equations).
Possible because diffeomorphisms form a non-associative loop with extra properties for which the RG action makes sense.

Perspectives:

- Proalgebraic groups and loops exist on associative, alternative, non-associative algebras (in particular unitary matrices): explore applications in maths and physics.
- Unitary loops on octonions are used to generalise gauge groups [Loginov 2003, Ootsuka-Tanaka-Loginov 2005]: explore the compatibility with non-associative RG.
- Develop software to compute with free product instead of tensor product.
- Compute a general integral formula for countertermes.
- Explore non-associative RG in Wilson's approach: replace usual flow of ODE by flow in smooth loops (cf. [Lev Sabinin 1999]).

Thank you for the attention!

